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Abstract. The earlier proposed method for exact determination of the energy spectra of
HamiltoniansH and the quantities Sp{f (H + W) − f (H)}, whereW is a finite-dimensional
perturbation, is extended to treat a still larger class of Hamiltonians. In particular, some two-
and three-dimensional problems became amenable to this approach. In addition, the expressions
for the density and local densities of states are deduced. As an example, an impurity problem
is considered in a simple cubic lattice with short-range and in a linear chain with long-range
interactions.

1. Introduction

In the recent work [1], we proposed a method for determination of the energy spectra of
HamiltoniansH and the quantities Sp{f (H +W)−f (H)} (W is finite-dimensional,f (x) is
a ‘general enough’ function) in the case whenH andH +W may be represented in the form
H = Tn(L)+V , whereTn(x) is a polynomial of degreen, L is a tridiagonal (J-)matrix with
a known spectral density,V is finite-dimensional and such thatH = Tn(L) + V remains
(2n + 1)-diagonal. We made use of the fact thatH is block-tridiagonal. Examples of
applications of the method include a number of problems for linear chains.

The purpose of the present work is twofold. First, we generalize the method in the way
thatTn(x) is replaced by an integrable functiong(x1, . . . , xd). This, in particular, allows us
to treat two-dimensional (2D) and three-dimensional (3D) problems within the framework of
the method since some of the corresponding Hamiltonians can be represented in the form
H = H0 + V , whereV is finite-dimensional andH0 is a function of several J-matrices.
For example, the one-magnon space of Heisenberg systems with a point spin defect or the
two-magnon space of systems without impurities readily decompose into the orthogonal sum
of subspaces in which (i) for the2D square lattice with nearest- and next-nearest-neighbour
interactionsH = L1 ⊗ L2 + I ⊗ T1(L2) + V and (ii) for the3D simple cubic lattice with
nearest-neighbour interactionsH = L1 ⊗ I ⊗ I + I ⊗L2 ⊗ I + I ⊗ I ⊗L3 +V whereLi are
J-matrices (see section 3.1). Here correspondingg(x1, . . . , xd), d = 2, 3, are polynomials
in their variables. On the other hand,g(x) = −ex + Tn(x), for example, is connected with
a model of a linear chain with infinite-range interactions (see section 3.3).

Second, we derive the expressions for local densities of states (or spectral functions)
applicable both to the Hamiltonians considered here and in [1] (see section 2.2).

Wheng(x1, . . . , xd) is a polynomial, we, as in [1], use the fact that the matrix of the
Hamiltonian can be considered to be block-tridiagonal but, unlike in [1], with the infinite
dimensionD of a block. The properties of block-tridiagonal matrices became an object of
study by physicists and mathematicians starting at least from the early works of Nagel [2]
and (in connection with the moment problem for operators) Krein [3] and still remain such
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134 I V Krasovsky and V I Peresada

[4] (where the authors construct solutions of a three-term matrix recurrence). Naturally,
physical papers on the subject were centred on determination of the matrix elements of the
resolvent of a block-tridiagonal matrix. Interesting in this respect are the works of Znojil
[5] and Wang [6]. However, their exact results are limited to the case of finite-dimensional
matrices and of those with the simplest asymptotics of the matrix elements. On the whole,
the theory of block-tridiagonal matrices (D > 1 or the so-called matrix case) remains much
less developed than that of a scalar case, that isD = 1. (One obvious reason for this is
matrix non-commutativity.) In this connection, the very important feature of our method is
that which can be termed as reduction of the matrix case to the scalar one for a large class
of block-tridiagonal matrices.

2. The method

2.1. The spectrum and thermodynamics

Let {Lk}dk=1 be a set of self-adjoint operatorsLk acting in separable Hilbert spacesHk and
represented in orthonormal bases{gk

i }∞i=0 of Hk by J-matrices(Lk,ij = Lk,ji andLk,ij = 0
if |i − j | > 1). DenoteI1 ⊗ · · · ⊗ Lk ⊗ · · · ⊗ Id in H ≡ ⊗d

k=1Hk by L̂k. Let T (x1, . . . , xd)

be a polynomial of degreenk in xk with real coefficients.
Then, as is easily seen, the operatorH0 ≡ T (L̂1, . . . , L̂d) has a block-(2n1+1)-diagonal

structure in the basis{ei1,...,id ≡ g1
i1

⊗ · · · ⊗ gd
id
}∞i1=0 . . .∞id=0 with blocks of infinite dimension

if d > 1. Let us call them the type-1 blocks. Now introduce another division into blocks
(of type-2) which will be used below, namely, divideH0 into the smallest possible blocks
so that it becomesblock-tridiagonal

A0 B0 0
B∗

0 A1 B1

B∗
1 A2 B2

0
. . .

. . .
. . .

 (1)

(we assume thatBi are non-degenerate).
The case whenT (x1, . . . , xd) is replaced by a more general real function is, obviously,

less general in terms of the method, since the matrix then consists of only one block. We
mention this case in section 2.3.

Consider the operatorH = H0+V , whereV is r-dimensional(r < ∞) with real matrix
elements and such thatH remains block-tridiagonal. We are going to find the spectrum
of H and Sp{f (H0 + V ) − f (H0)}, wheref (x) belongs to some unspecified but ‘general
enough’ class of functions. Ford = 1 this problem was solved in [1].

Let S(X) denote the spectrum ofX. As is known [7], the spectrum ofH0 is given
by the formulaS(H0) = T (S(L1), . . . , S(Ld)). H = H0 + V has the same continuous
spectrum† asH0 (which we denote byCS(H0)), but its discrete spectrum may change due
to V .

Suppose thatd > 1. If we truncate the type-1 blocks ofH t × t , repeat the reasoning
of [1] (making use of the fact that, as is easily seen,

T (L̂1, . . . , L̂d) =
∫

· · ·
∫

T (µ1, . . . , µd) dE1
µ1

⊗ · · · ⊗ dEd
µd

† Continuous spectrum here is the set of non-isolated points of growth of the resolution of the identity and
eigenvalues of infinite multiplicity.
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whereEi
µi

is the resolution of the identity ofLi), and formally consider the limit ast → ∞,
we shall have the following results.

Let

1(z) = |δij + Wij |∞0 (2)

where

Wij (z) =
∑
sk

(V P H (z))s,kj

{ ∑
m

P
H0
s,km(z)(R(z)e0;m, e0;i ) + Q

H0
s,ki(z)

}
index s is a block† index, i, j, k, m enumerate scalar elements within a block,

(V P H )s = Vs s−1P
H
s−1 + VssP

H
s + Vs s+1P

H
s+1

where P M
s (z), QM

s (z) are the matrix polynomials of the first and the second kind,
respectively, associated withM [1]. They are defined by the following relations in terms
of the blocks ofM:

P M
−1 = 0 P M

0 = I P M
i+1 = −B−1

i ((Ai − zI)P M
i + B∗

i−1P
M
i−1) i = 0, 1, . . .

QM
0 = 0 QM

1 = B−1
0 QM

i+1 = −B−1
i ((Ai − zI)QM

i + B∗
i−1Q

M
i−1) i = 1, 2, . . .

(R(z)e0;m, e0;i ) =
∫ ∞

−∞
dµ1 · · ·

∫ ∞

−∞
dµd

p1
m1

(µ1) · · ·pd
md

(µd) × p1
i1
(µ1) · · ·pd

id
(µd)

T (µ1, . . . , µd) − z
×ρ1(µ1) · · · ρd(µd) (3)

where

e0;k = g1
k1

⊗ · · · ⊗ gd
kd

0 6 k1 6 n1 − 1.

pk
i (λ) are the polynomials of the first kind associated withLk; spectral densities

ρk(µ) = (dEk
µgk

0, g
k
0)/dµ.

Then the discrete spectrum ofH (energiesz) can be found from the equation

1(z) = 0 (4)

and

Sp{f (H) − f (H0)} =
∫ ∞

−∞

df

dx
ξ(x) dx +

∑
i

{f (xi d) − f (xi b)} (5)

where

ξ(x) = 1

π
lim
y↓0

arg1(x + iy) + δ (6)

(where δ is an integer) ifx ∈ CS(H0) and ξ(x) = 0, otherwise. The summation in (5)
is over the pointsxid of the discrete spectrum ofH (xib is the boundary ofCS(H0) from
which xid ‘split off’). We assumed in (5) thatH0 has no discrete spectrum. However, it is
easy to generalize this formula [1]. To determineξ(x) uniquely, we take any continuous
branch of (6) and employ (5) with, say,f (x) = x, that is

SpV =
∫ ∞

−∞
ξ(x) dx +

∑
i

(xid − xib)

to find the integer constant.
The important fact which gives sense to (2) and makes our whole programme feasible

for d > 1 is that the first matrices in the sequence{P0, P1, . . .} are often rather sparse, and
V P involves only a few of them (see, e.g., section 3.1). This, in particular, leads to the

† Henceforth we deal only with the type-2 blocks and call them simply ‘blocks’.
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situation when only several (sayu) columns ofI + W differ from the corresponding ones
of I . Hence, properly changing the order of enumeration of the basis vectors, we shall have

1(z) = |δij + Wij |u−1
0 .

The only remaining essential problem is how to findρi(µ). This, however, can be done
wheneverLi = J + W , whereJ is a J-matrix corresponding to a system of orthogonal
polynomials with a known weight function (in other words,ρ(µ) of this matrix is known)
andW is finite-dimensional (see equation (13) which gives the general expression).

2.2. The spectral functions

The density of statesη(λ) in the continuous spectrumCS(H) of a self-adjoint operatorH
can be defined by the following relation:

η(λ) = lim
N→∞

1

N

N−1∑
i=0

ρii(λ) ρij (λ) = (dEλej , ei)

dλ
(7)

whereEλ is the resolution of the identity ofH and {ei}∞i=0 is an orthonormal basis.ρij is
the ‘local’ density of states (spectral function) corresponding to the vectorsei andej .

If perturbationV considered in section 2.1 is caused by a defect in the lattice, then,
assuming that the defects are independent and their concentration isc, we get directly from
(5)

η(λ) = η0(λ) − cξ ′(λ) (8)

where η(λ) and η0(λ) are the densities of states for a certain model of the lattice with
defects and for the ideal lattice, respectively.

Sometimes it is interesting to know the spectral functions ofH0 + V . Further we
consider the case whenH = H0 + V = T (L̂1, . . . , L̂d) + V is a block-tridiagonal matrix
defined in section 2.1. If the dimensionality of its blocks is infinite (d > 1), we truncate
themn × n and take the limit asn → ∞ in the results.

Using the unnumbered equation which precedes equation (26) in [1], after simple
manipulations we obtain

(R̃(z)e0;l , e0;m) ≡ R̃ml(z)

= 1

1(z)

∑
j

1jm(z)

[
Rjl(z) −

∑
si

(V QH(z))s,il

{ ∑
k

P
H0
s,ik(z)Rjk(z) + Q

H0
s,ij (z)

}]
(9)

whereR̃(z) = (H − zI)−1, R(z) = (H0 − zI)−1, Rik(z) = (R(z)e0;k, e0;i ) is given by (3)
and1jm(z) is the algebraic complement of the element(I + W)jm.

Note that the summation over indicesi, j, k in (9) is limited by n1 = n addends for
d = 1 and often by some finite number ford > 1.

Thus the spectral functions belonging to the first block are

ρml(x) = 1

π
Im lim

y↓0
R̃ml(x + iy) 0 6 m, l 6 n − 1. (10)

Hence it is easy to deduce the general expression

ρs;i, t;j (x) = (dExet;j , es;i )
dx

=
∑
m,l

P H
s,im(x)P H

t,j l(x)ρml(x) (11)

where we have used the property
∑n−1

m=0 P H
s,im(H)e0;m = es;i [1] for the ith basis vector of

the sth block.
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If H is tridiagonal (d = 1, n = 1), equation (10) can be considerably simplified. Indeed,
let ρ00 ≡ ρ and polynomialspi, qi correspond toH0 (H0 ii = ai, H0 ii+1 = H0 i+1i = bi)
whereasρ̃00 ≡ ρ̃, p̃i , q̃i to H = H0 + V (Hii = ãi , Hii+1 = Hi+1i = b̃i). Assume that
V ei = 0, i > r.

Then (9) and (10) reduce to

ρ̃(x) = 1 + G1(x) − G2(x)

limy↓0 |1(x + iy)|2 ρ(x) (12)

where

G1(x) =
∑

s

{(V p̃)sqs − (V q̃)sps}

G2(x) =
∑
sk

(V q̃)s(V p̃)k{psqk − pkqs}.

Let us now define the system of polynomialsq
(k)
i (x), i = 0, 1, . . ., where k is a

non-negative integer, associated with a J-matrixM as one satisfying the same recurrence
as pM

i (x), qM
i (x) with the initial conditionsq

(k)
i = 0, i = −1, 0, 1, . . . , k − 1, q

(k)
k =

(M−1 0M01M12 · · ·Mk−1k)
−1, (M−1 0 ≡ 1). Obviously,pM

i = q
(0)
i , qM

i = q
(1)
i .

Using the fact that, as is easy to verify,q
(k)
i = (x − Mkk)q

(k+1)
i − M2

k k+1q
(k+2)
i ,

i > k, we getG(k)

1 − G
(k)

2 = G
(k+1)

1 − G
(k+1)

2 , k = 0, 1, . . . , r − 2. HereG
(k)
i , i = 1, 2

correspond toH0 +V andH0 from which the firstk rows and columns are removed. Since
G

(r−1)

1 = G
(r−1)

2 = 0, we see thatG1 = G2.
Thus (12) becomes

ρ̃(x) = ρ(x)/R(x)

R(x) =
{

1 +
∑

k

(V p̃)k(pkS + qk)

}2

+
{ ∑

k

(V p̃)kpk

}2

ρ2π2 (13)

whereS(x) = v.p.
∫ ∞
−∞ ρ(µ)/(µ − x) dµ.

In the particular case whenH0 corresponds to the Chebyshev polynomials of the second
kind [1], we have

ρ(x) =


8

π

√
x(1 − x) x ∈ [0, 1]

0 x /∈ [0, 1]

S(x) = 4(1 − 2x)

and soR(x) becomes a polynomial inx. This fact allows us to simplify (13) even further.
Let us representR(x) in the formR(x) = ∑m

k=0 ckp̃k(x) wherem is the degree ofR(x) (note
that p̃k(x) is of exactly degreek). Then employing the well known orthogonality condition
[8]

∫ ∞
−∞ p̃i(x)p̃j (x)ρ̃(x) dx = δij , we get from (13)ck = ∫ ∞

−∞ ρ(x)p̃k(x) dx. Moreover,
since the rows ofH0 are identical (H0 corresponds to the Chebyshev polynomials), we have
p̃k = p̃rpk−r − p̃r−1pk−r−1 ∀k > r, which means (by the orthogonality condition for the
polynomials associated withH0) that ck = 0, ∀k > 2r. Since

p̃r = b0 · · · br−2

b̃0 · · · b̃r−2

pr +
r−1∑
i=0

αipi p̃r−1 = b0 · · · br−2

b̃0 · · · b̃r−2

pr−1 +
r−2∑
i=0

βipi

it also follows from the orthogonality condition thatc2r = 0.
Thus

ρ̃(x) = ρCh(x)∑2r−1
k=0 ckp̃k(x)

ck =
∫ ∞

−∞
ρCh(x)p̃k(x) dx. (14)
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As we mentioned in [1], this expression was originally used in [9]. Note that we do not
even have to calculate the integrals in (14):ck = d0 in the expansioñpk(x) = ∑k

i=0 dipi(x)

which is constructed directly.

2.3. Comparison with the Green function method

The standard Green function method formulated for a HamiltonianH = H0 + V whereV

is r-dimensional, yields the following conditions [10, 11].
For the discrete eigenvaluesε of H ,

|I + R(ε)V |r−1
0 = 0 (15)

for the density of states in a lattice with impurities,

η(x) = η0(x) − c

π

d

dx
lim
y↓0

Im ln |I + R(x + iy)V |r−1
0

= η0(x) − c

π

d

dx
lim
y↓0

arg|I + R(x + iy)V |r−1
0

(16)

whereR(z) = (H0 − zI)−1 and its matrix elements (Green functions) are computed by the
formula

(Rej , ei) ≡ Rij =
∑

k

ci∗
k c

j

k

εk − z

ei =
∑

k

ci
kϕk H0ϕk = εkϕk (ϕi, ϕj ) = δij .

In fact, the equation forRij is written for theN ×N truncatedH , and we still have to take
the limit asN → ∞.

The disadvantage of this method when applied toH of section 2.1 is that it is too
general; the differences of our approach stem from the utilization of the special properties
of H and H0. (a) The block-tridiagonal structure ofH and H0 entails the fact that, first,
the dimensionality of1(z) (2) can actually be less than that of the determinants in (15)
and (16) and, second, the integrals (3) belong only to the first block. This fact is especially
valuable if the dimensionality of the blocks is finite (e.g. in the case of linear systems [1]).
(b) H0 = T (L̂1, . . . , L̂d) leads to our using the spectral densitiesρi(λ) in the integrals (3)
whereas in the Green function method we have to know the full solution to the spectral
problem forH0 (εk, ϕk, N → ∞).

WhenBi in (1) have a complicated structure so thatB−1
i and, hence,Pi are difficult to

compute, we may use|I +R(z)V |r−1
0 instead of1(z) (we saw in [1] that these determinants

coincide up to a constant real factor) in our formulae thus forgoing possible advantages of
point (a). (This is also the case whenH0 = g(L̂1, . . . , L̂d) where g is a more general
function than a polynomial as, e.g., in section 3.3.) Point (b), however, may still be applied
to simplify the formulae forRij . Similarly, we may deal with the case whenV violates the
block-tridiagonal structure ofH0. On the other hand, point (a) is obviously valid for any
block-tridiagonalH andH0 with non-degenerate off-diagonal blocks.
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3. Examples

3.1.

Consider a simple but non-trivial example: a simple cubic lattice of spinss with a point
spin defectσ governed by the Heisenberg Hamiltonian with nearest-neighbour interactions

H = −J

2

∑
r,δ(r,r+δ 6=0)

(srsr+δ − s2) − Jσ

∑
δ

(σsδ − sσ ). (17)

The one-magnon spaceH of the system is spanned bye0 = σ−|0〉/√2σ , er =
s−
r |0〉/√2s, r 6= 0, wherer runs over all lattice sites;|0〉 is the state of total spin alignment

(s+
r |0〉 = 0, σ+|0〉 = 0). H |0〉 = 0.

We shall look for the discrete energy levels ofH in H and for the changes in
thermodynamic functions (in the approximation of non-interacting magnons) caused by
the impurity. This problem was considered in [10–12] by the Green function technique.
The approximate solution can also be found by the J-matrix method (d = 1, n = 1): the
argument is similar to that of [13]. Obviously, physically interesting results correspond to
J > 0.

Acting with H on the basis vectors enumerated successively along adjacent chains
in a fixed plain and then over adjacent planes, we get a block-tridiagonal matrix with
blocks corresponding to planes. The diagonal blocks have an analogous subblock-tridiagonal
structure with subblocks corresponding to chains. All these tridiagonal matrices are infinite,
however, inboth directions. Let us now introduce Cartesian coordinates with the centre at
the siter = 0 so thatH be invariant under the reflections in coordinate plains 0xy, 0xz,
0yz and change the basis using these symmetries. Accordingly,H splits into the direct sum
of eight matrices, four of which are the same as in the lattice without impurities, and the
other four can be written in the form

H = Lxi ⊗ I ⊗ I + I ⊗ Lyi ⊗ I + I ⊗ I ⊗ Lzi + Vi i = 1, . . . , 4 (18)

where

Lx1 = Ly1 = Lz1 = Ly2 = Lz2 = Lx3 = Lz3 = Lx4 = Ly4 = 4J s(I − LCh1)

Lx2 = Ly3 = Lz4 = 4J s(I − LCh2)

LCh1 =


1
2

√
2

4 0√
2

4
1
2

1
4

1
4

1
2

1
4

0
. . .

. . .
. . .

 LCh2 =


1
2

1
4 0

1
4

1
2

1
4

1
4

1
2

1
4

0
. . .

. . .
. . .

 .

LCh1, LCh2 correspond to the Chebyshev polynomials of the first and the second kind,
respectively, and their spectral densities areρCh1(x) = 1

π
[x(1 − x)]−1/2, ρCh2(x) =

8
π

[x(1 − x)]1/2 if x ∈ [0, 1] and zero otherwise.
Hence, the spectral density ofLi = 4J s(I − LChi ) is

ρLi
(x) = − 1

4J s
ρChi

(
1 − x

4J s

)
.

V1 =


6s(Jσ − J ) γ γ γ

γ β 0
γ β

γ 0 β

 β = Jσσ − J s γ = J s
√

2 − Jσ

√
2sσ

in the basis{e0,0,0; e0,0,1; e0,1,0; e1,0,0}; V2 = V3 = V4 = β in the basise0,0,0.
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Note that in the subspacei = 1, 1(z) is 3 × 3 but r = 4. Further analysis is a
straightforward application of the theory of section 2. As a result we have the discrete
energy levels and the shift functionξ(λ). According to (5), this is enough to find the changes
in thermodynamic functions caused by the independent impurities in the approximation of
non-interacting magnons.

From the symmetry considerations, the magnon density of statesη0(λ) for the lattice
without impurities can be written as follows:

η0(λ) = (dEλe0, e0)

dλ
= ρ00(λ) =

∫ ∞

−∞
dµ

∫ ∞

−∞
dνρL1(µ)ρL1(ν)ρL1(λ − µ − ν).

The density of states of the lattice with the impurities is then given by (8); the local densities
of states can be calculated using (9)–(11).

As we saw in [1] considering a linear chain, the two-magnon problem for an ideal
lattice allows a very similar formulation to that of the one-magnon-space problem for the
same lattice with a point impurity. This fact also holds for2D and3D cases. Here formulae
(4), (10), and (11) enable us to find two-magnon bound states and spectral functions in
the continuous spectrum (Raman spectrum, in particular). By other methods these studies
for the simple cubic lattice in question were carried out in [14–16] (including nearest- and
next-nearest-neighbour interactions).

3.2.

We have just seen how the problem about an impurity in a homogeneous cubic lattice
is connected with the Chebyshev polynomials. Conversely, any system of orthogonal
polynomials with known weight functionsρi(λ) (see the last paragraph of section 2.1)
generate similar soluble problems (about the spectrum and Sp{f (H +V )−f (H)} whenH

andH + V have the form as in section 2.1) for systems with different interactions between
particles.

Let us, for example, consider the Jacobi polynomials. Using equations (4.3.4) and
(4.5.1) in [17], we obtain the elements of the J-matrixL(α,β) as the coefficients in the
recurrence relation for the orthonormal polynomials as

L
(α,β)

ii = β2 − α2

(2i + α + β + 2)(2i + α + β)
i = 0, 1, 2, . . .

L
(α,β)

i−1 i = L
(α,β)

i i−1 = 2

2i + α + β

(
i(i + α)(i + β)(i + α + β)

(2i + α + β)2 − 1

)1/2

i = 1, 2, 3, . . .

α, β > −1.

The polynomials of the first kind associated with this J-matrix are the Jacobi polynomials
with the weight function (which is also the spectral density ofL(α,β))

ρ(x) =


0(α + β + 2)

2α+β+10(α + 1)0(β + 1)
(1 − x)α(1 + x)β x ∈ [−1, 1]

0 x /∈ [−1, 1]

where0(x) is the Euler Gamma function.

3.3.

Consider a linear Heisenberg chain of spinss with long-range interactions. LetJi be the
exchange constant corresponding to the interaction of a spin with itsi-nearest neighbours.
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Physically interesting is the case whenJi → 0, i → ∞. Let us introduce a point defect
with the same spinσ = s but different exchange constants̃Ji, i = 1, . . . , r, J̃i = Ji, i > r,
where r is finite. The generalization being straightforward, we shall assumer = 1 for
simplicity. Now let us look for the same quantities in this system as in the one considered
in 3.1.

The matrix of the HamiltonianH = H+ ⊕ H− in the basis†
ϕ+

0 = σ−|0〉/
√

2s ϕ±
k = (S−

k |0〉 ± S−
−k|0〉)/2

√
s k = 1, 2, . . . (19)

H+ = H+
0 + V + H+

0,ij = −(J|i−j | + Ji+j ) i, j > 0 J0 ≡ −2
∞∑
i=1

Ji

H+
0,00 = −J0 H+

0,i0 = −
√

2Ji i > 0 (20)

V + = (J̃1 − J1)

(
2 −√

2
−√

2 1

)
in the basis {ϕ+

0 , ϕ+
1 }.

Similarly, H− = H−
0 + V −, V − = J̃1 − J1 in the basisϕ−

1 .
On the other hand, let us find the matrix elements of the exponent of the following

tridiagonal matrixL infinite in both directions: Li i−1 = Li−1 i = b, Lii = 0, i =
. . . ,−1, 0, 1, . . ., whereb is a positive constant. Having performed a change of the basis
similar to (19), we haveL = L+ ⊕ L−,

eL+
ik = (eL+

pi(L
+)pk(L

+)ϕ0, ϕ0) =
∫ 2b

−2b

expi(x)pk(x)ρ(x)dx

= 1√
2
(eL+

0 i+k + (1 + (
√

2 − 1)δik)e
L+
0 |i−k|) i, k > 0.

Here we have used the fact thatpipk = {pi+k + (1+ (
√

2− 1)δik)p|i−k|}/
√

2, i, k > 0. The
spectral densityρ(x) = (2bπ

√
1 − {x/(2b)}2)−1.

Further,

eL+
00 = 1

π

∫ 1

−1
e2bx dx√

1 − x2
= I0(2b).

Iµ(x) is a well known cylindrical function defined in terms of the Bessel functionJµ(x):
Iµ(x) = e−iπµ/2Jµ(ix).

Using the recurrence relationspn(x) = (x/b)pn−1(x) − pn−2(x) and In(x) =
2d(In−1(x) − In−2(x))/ dx, n = 2, 3, . . ., p1 = x/b, I1(x) = dI0(x)/ dx, we finally get

eL+
0i =

√
2Ii(2b).

Hence, in the original basiseL
i i+k = Ik(2b).

So if we put the exchange integralsJi = Ii(2b), i = 1, 2, . . . (a trivial generalization
beingJi = cIi(2b), wherec is a scaling factor), then

H±
0 = −eL± + {I0(2b) + 2

∞∑
i=1

Ii(2b)}I = −eL± + e2bI. (21)

As is easily seen from the power-series expansion of the Bessel functions,Jk+1/Jk < b.
Thus, changingb, we can regulate the rate of interaction decay.

In equation (2)

W+
ij (z) = −

1∑
k=0

V +
kj

∫ 2b

−2b

pk(µ)pi(µ)

eµ − e2b + z
ρ(µ) dµ (22)

† For convenience, the Hamiltonian is divided bys.



142 I V Krasovsky and V I Peresada

and similarly for W−
ij (z). Now we have all we need to calculate the changes in

thermodynamic functions, discrete energy levels, and local densities of states using (4),
(5), (10), and (11).

Note finally that we can assign any predefined values toJi , i = 1, 2, . . . , n, wheren

is finite, and the problem will still remain exactly soluble. Indeed, in such a case we shall
have the representationH0 = −eL + Tn(L).
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